

Reservoir Modeling with GSLIB Indicator Simulation for Categorical Variables

- Sequential Simulation: the Concept
- Steps in Sequential Simulation
- SISIM Program

Sequential Simulation: the Concept

- 1. Assign data values to closest grid node
- 2. Establish a random path through all of the grid nodes
- 3. Visit each grid node:
 - (a) find nearby data and previously simulated grid nodes
 - (b) construct the conditional distribution by kriging (this is where the variogram comes in)
 - (c) draw simulated value from conditional distribution
- 4. Check the results

STEP 1

Assign Data to Grid Nodes

Why?

- Explicitly honor data \Rightarrow data values will appear in final 3-D model
- Improves the CPU speed of the algorithm: searching for previously simulated nodes and original data is accomplished in one step

Considerations:

- Take the closest of multiple data within the same cell \Rightarrow <u>could lose some</u> <u>information</u> (see in figure \bigcirc)
- Not an option when simulating a cross-sectional or small-area model

STEP 2

Establish a Random Path

	32	4	34	18	35	2	21	
	30	31	14	8	9	16	3	
	28	6	24	5	15	13	18	
	11	5	28	20	27	23	10	
	1	27	19	33	25	4	26	
	29	29	7	12	17	6	22	

- Visit each cell once and only once in random order
- Can do this in many ways:
 - draw a random number and multiply it by N
 - sort an array of random numbers while carrying an array of indices capitalize on the limited period length of linear congruential generators
- Skip over cells (actually grid nodes) that already have a value

STEP 3 - (a)

Find Nearby "Informed" Nodes

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

- "Informed" nodes refers to both data-nodes and nodes that have been informed earlier in the random path
- Typically use spiral search to identify the close nodes
- Limit the number of nodes actually considered:
 - octant search (?)
 - maximum per octant (say 4)
 - maximum number

STEP 3 - (b) Construct Conditional Distribution

- Conditional distribution is constrained by:
 - global proportion of each lithology type
 - local data
 - "local" proportion from secondary data such as seismic
- Calculate by kriging the binary indicator transform for each rock type

Indicator Simulation (1)

• Define an indicator transform:

 $i(u_{\alpha};k) = \begin{cases} 1, & if \quad lithosfacies \quad k \quad present \quad at \quad location \quad u_{\alpha} \\ 0, & if \quad not \end{cases} \end{cases}$

• Average of an indicator is the global proportion: proportion of $k = E\{I(u_{\alpha};k)\}$

$$=\frac{\sum_{\alpha=1}^{n}w_{\alpha}\cdot i(u_{\alpha;k})}{n}$$

 w_{α} values account for data clustering

Indicator Simulation (2)

• The variogram of an indicator variable measures spatial correlation:

$$\gamma_{I}(h) = \frac{1}{2} E\{[I(u;k) - I(u+h;k)]^{2}\}$$

- Given *n* nearby data values *k*(**u**_{*i*}),*i*=1,...,*n* how do we calculate the conditional distribution?
- Estimate conditional probabilities of each rock type $p_k^*(\mathbf{u})$, k=1,...,K by a linear combination of the nearby data:

$$p_k^*(u) = \sum_{\alpha=1}^n \lambda_\alpha(u) \cdot I(u_\alpha;k) + [1 - \sum_{\alpha=1}^n \lambda_\alpha(u)] \cdot m_k$$

- Determine weights $\lambda_{\alpha}(\mathbf{u})$, $\alpha=1,...,n$ by the well known "normal system" or kriging.
- Kriging weights account for two things:
 - clustering of the data locations
 - closeness of the data to the location being considered

STEP 3 - (d) Draw a Simulated Value

- probabilities $p_k^*(u)$, k=1,...,K are given by kriging
- Procedure:
 - draw a random number $\in [0,1]$
 - find which class k is specified by the random number
 - assign k to node
- Since the conditional probabilities were estimated by kriging with a given variogram $\gamma_k(\mathbf{h})$, k=1,...,K, the simulated values, taken all together, will reproduce those variograms , $\gamma_k(\mathbf{h})$, k=1,...,K

Detailed Steps in SISIM

- 1. Establish grid network and coordinate system (Z_{rel} -space)
- 2. Assign data to the nearest grid node (take the closest of multiple data assigned to same node)
- 3. Determine a random path through all of the grid nodes
 - (a) find nearby data and previously simulated grid nodes
 - (b) construct the conditional probabilities by kriging
 - (c) draw simulated value from conditional distribution
- 4. Check results
 - (a) honor data?
 - (b) honor global proportions?
 - (c) honor variogram?
 - (d) look reasonable

START OF PARAMETERS:

```
5
0.5 1.0 2.5 5.0 10.0
0.12 0.29 0.50 0.74 0.88
../data/cluster.dat
1 2 0 3
direct.ik
1 2 0 3 4 5 6 7
0
0.61 0.54 0.56 0.53 0.29
-1.0e21 1.0e21
0.0 30.0
    0.0
   1.0
    30.0
1
cluster.dat
3 0
0
sisim.dbg
sisim.out
```

Parameters for SISIM *****

Geostalistical Soster I HBrard 1 = continuous(cdf), 0 = categorical(p)\ number thresholds/categories \ thresholds / categories \ global cdf / pdf \land file with data \ columns for X,Y,Z, and variable \ file with soft indicator input \ columns for X,Y,Z, and indicators \land Markov-Bayes simulation (0=no,1=yes) \land calibration B(z) values \ trimming limits \ minimum and maximum data value \ lower tail option and parameter \ middle option and parameter \ upper tail option and parameter \ file with tabulated values \ columns for variable, weight \ debugging level: 0,1,2,3 \ file for debugging output \ file for simulation output

1

0 0

0

0

0

1

1

1

Geostalistical Souther Available at www.CLSIB.com ary \ number of realizations 50 0.5 1.0 \nx,xmn,xsiz 50 0.5 1.0 \ny,ymn,ysiz 1.0 10.0 $\ \ nz, zmn, zsiz$ \ random number seed 69069 12 \ maximum original data for each kriging 12 \ maximum previous nodes for each kriging \ maximum soft indicator nodes for kriging $\$ assign data to nodes? (0=no,1=yes) 3 $\$ multiple grid search? (0=no,1=yes),num $\ \ maximum per octant \quad (0=not used)$ 20.0 20.0 20.0 \ maximum search radii 0.0 0.0 0.0 \ angles for search ellipsoid 2.5 $\setminus 0 =$ full IK, 1 = median approx. (cutoff) $\setminus 0 = SK, 1 = OK$ 0.15 \One nst, nugget effect 0.85 0.0 0.0 0.0 \it,cc,ang1,ang2,ang3 10.0 10.0 10.0 \a_hmax, a_hmin, a_vert 0.10 \Two nst, nugget effect 0.90 0.0 0.0 0.0 \it,cc,ang1,ang2,ang3 10.0 10.0 10.0 \a_hmax, a_hmin, a_vert 0.10 \ Three nst, nugget effect 1 0.90 0.0 0.0 0.0 \it,cc,ang1,ang2,ang3 10.0 10.0 10.0 \a_hmax, a_hmin, a_vert