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Case Studies / Modeling Tips

• Sequential Approach to Reservoir Modeling
• Question / Answer Time
• A Small Example
• Glimpses of Case Studies

Reservoir Modeling with GSLIB
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Reservoir Modeling

Main geostatistical modeling flow chart: the structure and stratigraphy of each reservoir
layer must be established, the lithofacies modeled within each layer, and then porosity and
permeability modeled within each lithofacies.

Cell-based Lithofacies
Modeling

Object-Based Lithofacies
Modeling

Establish Stratigraphic Layering / Coordinates

Porosity Modeling

Permeability Modeling

Repeat for Multiple Realizations

Model Uses
1. Volumetric / Mapping
2. Assess Connectivity
3. Scale-Up for Flow Simulation
4.  Place Wells / Process Design
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Introductory Example

• Fashioned after a real problem and the geological data is based on outcrop observations 
• A horizontal well is to be drilled from a vertical well to produce from a relatively thin oil 

column.
• The goal is to construct a numerical model of porosity and permeability to predict the 

performance of horizontal well including (1) oil  production, (2) gas coning, and (3) 
water coning.

Top of ReservoirExisting Vertical Well
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Introductory Example -
Petrophysical Data

Permeability characteristics of each lithofacies: the coefficient of variation is the 
average permeability divided by the standard deviation, Kv is the vertical permeability, 
and Kh is the horizontal permeability.

Code Lithofacies Average Coefficient Kv :Kh

Perm. of variation ratio
0 Coal and Shale 1 md 0.00 0.1
1 Incised Valley  Fill Sandstone 1500 md 1.00 1.0
2 Channel Fill Sandstone 500 md 1.50 0.1
3 Lower Shoreface Sandstone 1000 md 0.75 0.8Pe
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Flow Simulation

Gridding for flow simulation.  For numerical efficiency, the vertical gridding is 
aligned with the gas-oil fluid contact and the oil-water fluid contact.  The black 
dots illustrate the location of the proposed horizontal well completions.  
Representative three-phase fluid properties and rock properties such as 
compressibility have been considered.  It would be possible to consider these 
properties as unknown and build that uncertainty into modeling; however, in this 
introductory example they have been fixed with no uncertainty.
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Simple Geologic Models

Three simple assignments of rock properties (a) a “layercake” or horizontal 
projection model, (b) a smooth inverse distance model, and (c) a simple Gaussian 
simulation.

Layercake Model

Smooth Model

Gaussian Simulation Model
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Simple Geologic Models: 
Flow Results

Flow results: layercake model - solid line; smooth model - long dashes; simple 
geostats model -- short dashes.
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Better Geologic Model

The first geostatistical realization shown on the geological grid and the flow 
simulation grid

(a) Geostatistical Model (b) Geostatistical Model - Flow Grid
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Multiple Realizations
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Geologic Models - Flow Results

Flow results from 20 geostatistical realizations (solid gray lines) with simple 
model results superimposed
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Uncertainty

The cumulative oil production after 1000 days and the time to water breakthrough.  
Note the axis on the two plots.  There is a significant difference between the 
simple models and the results of geostatistical modeling (the histograms).
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Major Arabian Carbonate 
Reservoir

• GOSP 2 & 7 Area study commissioned by 
Saudi Aramco

• SPE29869 paper Integrated Reservoir 
Modeling of a Major Arabian Carbonate 
Reservoir by J.P. Benkendorfer, C.V. Deutsch, 
P.D. LaCroix, L.H. Landis, Y.A. Al-Askar, 
A.A. Al-AbdulKarim, and J. Cole

• Oil production from wells on a one-kilometer 
spacing with flank water injection.  There has 
been significant production and injection 
during the last 20 years

• This has had rapid and erratic water movement 
uncharacteristic of the rest of the field  a
reason for building a new geological and flow 
simulation models

Zone Porosity  % Layer
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Modeling Process

• Standard GSLIB software (because it was for Saudi Aramco)
• Novel aspect was modeling permeability as the sum of a matrix permeability 

and a large-scale permeability
– fractures
– vuggy and leached zones
– bias due to core recovery

• Typical modeling procedure that could be applied to other carbonates and to 
clastic reservoirs

Lithology Porosity Matrix
Permeability

Large-Scale
Permeability
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Indicator Simulation of 
Lithology

Presence / absence of limestone / dolomite was modeled with indicator simulation 
(SISIM) on a by-layer basis
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Gaussian Simulation of 
Porosity

• Variogram model for porosity in limestone:
Vertical Porosity Variogram 
Layer 8 (Limestone)

Horizontal Porosity Variogram 
Layer 8 (Limestone)
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Gaussian Simulation of 
Porosity

Porosity models for limestone and dolomite were built on a by-layer basis with 
SGSIM and then put together according to the layer and lithology template
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Indicator Simulation of 
Matrix Permeability

Numbers above x-axis are porosity class percentages
Numbers at corners are porosity/permeability class percentages
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Gaussian Simulation of 
Large-Scale Permeability

• Matrix permeability at each well location yields a K•hmatrix
• Well test-derived permeability at each well location yields a K•htotal
• Subtraction yields a K•hlarge
• Vertical distribution of K•hlarge scale on a foot-by-foot basis is done by 

considering multiple CFM data

Vertical Large Scale Variogram Layer 5

Stratigraphic Distance

Horizontal Large Scale Variogram Layer 5

Stratigraphic Distance
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Gaussian Simulation of 
Large-Scale Permeability

• Large-scale permeability models were built on a by-layer basis with SGSIM
• Matrix permeability and large-scale permeability models were added together 

to yield a geological model of permeability
• A calibrated power average was considered to scale the geological model to 

the resolution for flow simulation
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Flow Simulation: First 
History Match
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Flow Simulation: Fourth 
History Match
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